LIQ và LIS sử dụng phương pháp quy hoạch động – SPOJ

Đề bài:

Thuật toán:

  • Gọi L[i] là độ dài dãy con tăng dài nhất bắt đầu bằng phần tử thứ i trong dãy
  • L[i] = L[j] + 1 với j=i+1..n và a[j] > a[i]
  • Sử dụng tìm kiếm nhị phân để tính nhanh mảng L[]

Bạn hãy tham khảo cụ thể thuật toán bài này ở trang 143 quyển “Giải thuật và lập trình” – thầy Lê Minh Hoàng. Theo mình đánh giá thì đây là thuật + code chi tiết nhất, rất phù hợp cho các bạn newbie. Nếu đã hiểu rồi thì code sẽ ngắn hơn thầy nhiều 🙂

Code:

program LongestSubSequence;
const
  InputFile  = 'INCSEQ.INP';
  OutputFile = 'INCSEQ.OUT';
const
  max = 5000;
var
  a, L, T, StartOf: array[0..max + 1] of Integer;
  n, m: Integer;
 
procedure Enter;
var
  i: Word;
  f: Text;
begin
  Assign(f, InputFile); Reset(f);
  ReadLn(f, n);
  for i := 1 to n do Read(f, a[i]);
  Close(f);
end;
 
procedure Init;
begin
  a[0] := -32768;
  a[n + 1] := 32767;
  m := 1;
  L[n + 1] := 1;
  StartOf[1] := n + 1;
end;
 
function Find(i: Integer): Integer;
var
  inf, sup, median, j: Integer;
begin
  inf := 1; sup := m + 1;
  repeat
    median := (inf + sup) div 2;
    j := StartOf[median];
    if a[j] > a[i] then inf := median
    else sup := median;
  until inf + 1 = sup;
  Find := StartOf[inf];
end;
 
procedure Optimize;
var
  i, j, k: Integer;
begin
  for i := n downto 0 do
    begin
      j := Find(i);
      k := L[j] + 1;
      if k > m then
        begin
          m := k;
          StartOf[k] := i;
        end
      else
        if a[StartOf[k]] < a[i] then
          StartOf[k] := i;
      L[i] := k;
      T[i] := j;
    end;
end;
 
procedure Result;
var
  f: Text;
  i: Integer;
begin
  Assign(f, OutputFile); Rewrite(f);
  Writeln(f, m - 2);
  i := T[0];
  while i <> n + 1 do
    begin
      Writeln(f, 'a[', i, '] = ', a[i]);
      i := T[i];
    end;
  Close(f);
end;
 
begin
  Enter;
  Init;
  Optimize;
  Result;
end.

LIQ và LIS sử dụng BIT – SPOJ

Đề bài:

Thuật toán:

  • Rời rạc hóa lại dãy
  • Gọi F[i] là độ dài dãy con tăng dài nhất kết thúc là số <= i
  • F[i] = max(F[1..a[i]-1] + 1)
  • Sử dụng cấu trúc dữ liệu BIT để tính mảng F trong O(logn)
  • ĐPT: O(nlogn)

Code:

using namespace std;
//#include<bits/stdc++.h>
#include <algorithm>
#include <stdio.h>
#define FOR(i,a,b) for (long long i=a;i<b;i++)
#define FORE(i,a,b) for (long long i=a;i<=b;i++)
#define FORD(i,a,b) for (long long i=a;i>=b; i--)
 
int n, a[300010], T[300010], c[300010], f[300010], dem;
pair<int, int> b[300010];
 
int Get(int x)
{
    int ans = 0;
    if (x == 0) return 0;
    while (x > 0) {
        ans = max(ans, T[x]);
        x -= x & (-x);
    }
    return ans;
}
 
void Update(int x, int v)
{
    while (x <= n){
        T[x] = max(T[x], v);
        x += x & (-x);
    }
}
 
int main()
{
    //freopen("LIS.inp", "r", stdin);
    //freopen("LIS.out", "w", stdout);
    //cin>>n;
    scanf("%d", &n);
    FORE(i, 1, n) {
        //cin>>a[i];
        scanf("%d", &a[i]);
        b[i].first = a[i];
        b[i].second = i;
    }
 
    sort(b + 1, b + n + 1);
 
    int dem = 1; c[ b[1].second ] = dem;
    FORE(i, 2, n) {
        if (b[i].first > b[i - 1].first) dem++;
        c[ b[i].second ] = dem;
    }
    int ans = 0;
 
    FORE(i, 1, n) a[i] = c[i];
    //FORE(i, 1, n) cout<<a[i]<<" ";cout<<"=="<<endl;
    //cout<<"????"<<endl;
    FORE(i, 1, n) {
        f[i] = Get(a[i] - 1) + 1;
        Update(a[i], f[i]);
        ans = max(ans, f[i]);
    }
 
    //cout<<ans<<endl;
    printf("%d", ans);
    return 0;
}