Học toán rời rạc để làm gì?

Toán rời rạc đa phần là lý thuyết nên nhiều bạn thường đặt ra câu hỏi học toán rời rạc thì để làm gì.

Vậy học toán rời rạc để làm gì?

  • Lý thuyết tập hợp (ánh xạ tập hợp giao hợp, quan hệ) giúp ta xây dựng hệ quản trị cơ sở dữ liệu.
  • Lý thuyết đồ thị giúp bạn xấy dựng các mạng lướti truyền tin. Giải được các bài toàn về đồ thị. Như giải thuật BFS thường được dùng trong các rounter để tìm đường đi ngắn nhất.
  • Cây thì nhờ đó có thuật giải huffman giúp nén thông tin. hoặc giúp làm cây quyết định, xây dựng chiến thuật min-max dùng trong trí tuệ nhân tạo để giải quyết các bài toàn về chơi cờ, nim. Xây dựng cây tiền tố, hậu tố để máy tính có thể hiểu và tính toán đc các phép tính thông thường của con người.
  • Học về độ tăng của hàm giúp ta đánh giá thuật toán từ đó chọn thuật toán thích hợp cho mỗi bài toán đề ra.
  • Lý thuyết số có vài ứng dụng trong Cryptography. Ví dụ như lý thuyết đồng dư của TRR.
  • Xác xuất thống kê được ứng dụng trong AI.
  • Ngoài ra rời rạc còn giúp ta hiểu cách máy tính biểu diễn các số như thế nào.

 

[Discrete Mathematics] Sets and Funtions

1. Sets

  • A set is an unordered collection of objects, called elements or members of the set.
  • A set is said to contain its elements
  • $ a \in A $ if a is element of A
  • $ a \notin A $ if a is not element of A
  • Ways to describe set
    • List all the members of a set (Roster method). E.g $ A = \{a, b, c, d\} $ (Roster method)
    • Use set builder notation: $ X = \{ x \mid P(x) \} $$$ E.g \ \ O=\{x \mid x \ is \ odd\} $$
  • A is a subset of B if and only if every element of A is also an element of B.$$ A \subseteq B \Leftrightarrow \forall x (x \in A \rightarrow x \in B) $$
  • Two sets are equal if and only if they have the same elements.$$ A = B \Leftrightarrow \forall x (x \in A \leftrightarrow x \in B) $$$$ A = B \Leftrightarrow A \subseteq B \land B \subseteq A $$
  • The empty set$\emptyset$$$ For \ every \ set \ \emptyset \subseteq S, S \subseteq S $$
  • Given a set $S$, the power set of $S$ is the set of all subsets of the set S. The power set of S is denoted by $\mathcal{P}(S)$

2. Set operations

  • The union of the sets A and B is the set that contains those elements that are either in A or in B, or in both.$$ A \cup B = \{x \mid x \in A \lor x \in B \} $$
  • The intersection of the sets A and B is the set containing those elements in both A and B.$$ A \cap B = \{x \mid x \in A \land x \in B \} $$
  • The difference of A and B is the set containing those elements that are in A but not in B. The difference of A and B is also called the complement of B with respect to A.$$ A \setminus B = \{ x \mid x \in A \land x \notin B \} $$

Table set identies

To be done

3. Cartesian product

  • The ordered n-tuple (a1, a2, . . . , an) is the ordered collection that has a1 as its first element, a2 as its second element, . . . , and an an as its nth element.
  • The Cartesian product of the sets A1, A2, . . . , An, denoted by A1 x A2 x · · · x An, is the set of ordered n-tuples (a1, a2, . . . , an), where ai belongs to Ai for i = 1, 2, . . . , n.$$A_1 × A_2 × · · · × A_n = \{ \ (a_1, a_2, . . . , a_n) \mid a_i ∈ A_i, i = 1, 2, . . . , n \ \} $$

4. Function

  • Let X and Y be nonempty sets. A function f from X to Y is an assignment of exactly one element of X to each element of Y$$ f : X \to Y $$
  • A function f is said to be one-to-one, or an injunction, if and only if f(a) = f (b) implies that a = b for all a and b in the domain of f (Injunctive)$$ \forall a \forall b (a \neq b \rightarrow f(a) \neq f(b)) $$
  • A function f from X to Y is called onto, or a surjection, if and only if for every element y ∈ Y there is an element x ∈ X with f(x) = y (Surjective)$$ \forall y \in Y, \exists x \in X : f(x) = y $$
  • A function f is a one-to-one correspondence, or a bijection, if it is both one-to-one and onto. (Bijective)$$ \forall y \in Y, \exists ! x \in X : f(x) = y $$
  • Let f be a function from the set X to the set Y and let g be a function from the set y to the set C. The composition of the functions g and f, is defined by is defined by (f ◦ g)(a) = f (g(a)).

5. Cardinality of Sets

Definition

The sets A and B have the same cardinality if and only if there is a one-to-one correspondence from A to B. When A and B have the same cardinality, we write |A| = |B|.

To be done

References

  • Discrete Mathematics and Its Applications 7th Edition, Kenneth H. Rosen
  • Đại số tuyến tính, Nguyễn Hữu Việt Hưng

[Discrete Mathematics] Logic and Proof

I. Logic and Proof

 

1. Propositional Logic

A proposition is a declarative sentence (that is, a sentence that declares a fact) that is either true or false, but not both.

Name Meaning Notation
negation not p $\lnot p$
disjunction p or q $p \lor q$
conjunction p and q $p \land q$
conditional if p, then q $p \rightarrow q$
biconditional p if and only if q $p \leftrightarrow q$

2. Propositional Equivalences

A compound proposition that is always true, no matter what the truth values of the propositional variables that occur in it, is called a tautology.

A compound proposition that is always false is called a contradiction.

A compound proposition that is neither a tautology nor a contradiction is called a contingency.

The compound propositions p and q are called logically equivalent if $p \leftrightarrow q $ is a tautology. ($p \equiv q$)

Equivalence Name
$$ p \lor F \equiv p $$

$$ p \land T \equiv p $$

Identity laws
$$ p \lor T \equiv T $$

$$ p \land F \equiv F $$

Domination laws
$$ p \lor p \equiv p $$

$$ p \land p \equiv p $$

Idempotent laws
$$ \lnot(\lnot p)) \equiv p $$ Double negation law
$$ p \lor q \equiv q \lor p $$

$$ p \land q \equiv q \land p $$

Commutative laws
$$ (p \lor q) \lor r \equiv p\lor(q\lor r) $$

$$ (p \land q) \land r \equiv p \land (q \land r) $$

Associative laws
$$ p \lor (q \land r) \equiv (p \lor q) \land (p \lor r) $$

$$ p \land (q \lor r) \equiv (p \land q) \lor (p \land r) $$

Distributive laws
$$ \lnot (p \land q) \equiv \lnot p \lor \lnot q $$

$$ \lnot (p \lor q) \equiv \lnot p \land \lnot q $$

De Morgan’s laws
$$ p \lor (p \land q) \equiv p $$

$$ p \land (p \lor q) \equiv p $$

Absorption laws
$$ p \lor \lnot p \equiv T $$

$$ p \land \lnot p \equiv F $$

Negation laws
Table of common Logical equivalence

3. Predicates and Quantifiers

To be done

References

Discrete Mathematics and Its Applications 7th Edition, Kenneth H. Rosen